Group Equivariant Convolutional Networks

نویسندگان

  • Taco Cohen
  • Max Welling
چکیده

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symmetries. By convolving over groups larger than the translation group, G-CNNs build representations that are equivariant to these groups, which makes it possible to greatly increase the degree of parameter sharing. We show how G-CNNs can be implemented with negligible computational overhead for discrete groups such as the group of translations, reflections and rotations by multiples of 90 degrees. G-CNNs achieve state of the art results on rotated MNIST and significantly improve over a competitive baseline on augmented and non-augmented CIFAR-10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intertwiners between Induced Representations (with Applications to the Theory of Equivariant Neural Networks)

Group equivariant and steerable convolutional neural networks (regular and steerable G-CNNs) have recently emerged as a very effective model class for learning from signal data such as 2D and 3D images, video, and other data where symmetries are present. In geometrical terms, regular G-CNNs represent data in terms of scalar fields (“feature channels”), whereas the steerable G-CNN can also use v...

متن کامل

Robustness of Rotation-Equivariant Networks to Adversarial Perturbations

Deep neural networks have been shown to be vulnerable to adversarial examples: very small perturbations of the input having a dramatic impact on the predictions. A wealth of adversarial attacks and distance metrics to quantify the similarity between natural and adversarial images have been proposed, recently enlarging the scope of adversarial examples with geometric transformations beyond pixel...

متن کامل

Learning Steerable Filters for Rotation Equivariant CNNs

In many machine learning tasks it is desirable that a model’s prediction transforms in an equivariant way under transformations of its input. Convolutional neural networks (CNNs) implement translational equivariance by construction; for other transformations, however, they are compelled to learn the proper mapping. In this work, we develop Steerable Filter CNNs (SFCNNs) which achieve joint equi...

متن کامل

Exploiting Cyclic Symmetry in Convolutional Neural Networks

Many classes of images exhibit rotational symmetry. Convolutional neural networks are sometimes trained using data augmentation to exploit this, but they are still required to learn the rotation equivariance properties from the data. Encoding these properties into the network architecture, as we are already used to doing for translation equivariance by using convolutional layers, could result i...

متن کامل

Steerable CNNs

It has long been recognized that the invariance and equivariance properties of a representation are critically important for success in many vision tasks. In this paper we present Steerable Convolutional Neural Networks, an efficient and flexible class of equivariant convolutional networks. We show that steerable CNNs achieve state of the art results on the CIFAR image classification benchmark....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016